• Wed. Sep 21st, 2022

CIO vision 2025: Bridging the gap between BI and AI – MIT Technology Review


Sep 21, 2022

Global CIO survey on AI adoption by 2025.
In association withDatabricks
Nearly a decade after they emerged from science labs, AI and machine learning are firmly embedded in enterprise technology environments and are starting to generate value for many businesses. It is increasingly difficult to find organizations that have not at least explored AI use in their business in some way. In a survey, conducted by MIT Technology Review Insights, of 600 CIOs and other technology leaders, the share of those saying their companies are not using AI today is 6% or less in any of seven core enterprise functions.
Although the hype surrounding AI and machine learning has largely subsided and use case development is widespread, these technology fields—and especially their commercial application—are still early in their maturity. Just a small number of organizations in our research aim to become AI-driven—a status we define as AI and machine learning underpinning almost everything the enterprise does—by 2025. However, this elite group—who we term “AI leaders” and comprise 14% of the overall survey sample—as well as the many others looking simply to embed AI more firmly in the enterprise foundations face formidable challenges to achieving their objectives. 
Addressing shortcomings in companies’ data management and infrastructure, as well as internal structural and process rigidities and talent deficits, loom large among those challenges. Some 72% of the technology executives we surveyed for this study say that, should their companies fail to achieve their AI goals, data issues are more likely than not to be the reason. Improving processing speeds, governance, and quality of data, as well as its sufficiency for models, are the main data imperatives to ensure AI can be scaled, say the survey respondents.  
This report sheds light on these and other data constraints that organizations must address to unleash the potential AI holds for their businesses. It also identifies the investments and other measures companies plan to take to align their data capabilities more closely with their AI ambitions. The study’s findings are based on a global survey of 600 chief information officers, chief technology officers, and other senior technology leaders. We also drew insights from in-depth discussions with 10 such executives. 
Following are the study’s key findings:
Download the full report.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.
Greg Rutkowski is a more popular prompt than Picasso.
Large language models are trained on troves of personal data hoovered from the internet. So I wanted to know: What does it have on me?
And it’s giving the data away for free, which could spur new scientific discoveries.
The machine-learning tool could help researchers discover entirely new proteins not yet known to science.
Discover special offers, top stories, upcoming events, and more.
Thank you for submitting your email!
It looks like something went wrong.
We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.
Our in-depth reporting reveals what’s going on now to prepare you for what’s coming next.
Subscribe to support our journalism.
© 2022 MIT Technology Review


Leave a Reply

Your email address will not be published.